

Our secure productivity solution stands out due to the multi-level encryption
and security concepts we use at every stage of user interaction, folder and file
management, and admin operations to protect against unauthorized data access,
theft or data leaks while maintaining full confidentiality of communication.

The backbone of this concept is our award-winning encryption technology that
guarantees any data stored and shared in Tresorit is only accessible to you and
the intended recipient(s) you have explicitly shared it with. As a result, users
simply need not worry about their files in the cloud, as no data ever leaves their
devices in unencrypted form.

From registration to folder or file activity, and admin supervision, various
encryption and security measures ensure that your data is safeguarded according
to the highest industry standards. The Tresorit Security Whitepaper is a collection
of the technical background of these methods and how they work at di"erent
stages of the user journey.

Tresorit — Encryption Whitepaper 2

At Tresorit, we believe that every business should be given the right to take back
control of their digital valuables. This vision has given birth to an end-to-end encrypted
productivity solution for ultra-secure collaboration trusted by users worldwide.

Fast-paced digitalization, the accelerating shift to remote work, and increasingly
sophisticated cyber-attacks, especially common ransomware attacks, have
accelerated the shift to secure cloud storage providers.

Nevertheless, while end-to-end encryption (or E2EE) has been around for a while,
it’s not always clear what organizations mean when they claim to o"er end-to-end
encrypted services. There are also several best practices we believe should be
industry standard and yet are not o"ered by several services.

Since its inception, Tresorit has been committed to o"ering the highest security
and data protection standards for sensitive information based on client-side
encryption coupled with zero-knowledge authentication and cryptographic
key management. Together these form a truly end-to-end encrypted service.

Architectural criteria: Information exchange happens between parties
through a method in which the origin encrypts the information, and only
the intended destination(s) decrypt the information without any
intermediary decryption.

Extended definition of parties: The parties can either be individuals
or organizations. In the latter case, party refers to a system or
components that are fully trusted and stay under the control of
the respective organization.

Key exchange criteria: Exchanging encryption keys is done in a way
that only the communicating parties gain access to the keys, ensuring
no third party can access them.

Key generation and management criteria: The keys used for encrypting
information are generated by the sending party, and are managed by
the participating parties in a way that no third party can gain access
to them, not even temporarily.

Key backup criteria: The private keys of all parties are stored in a way
that no one else can gain access to them (e.g., in an encrypted format).

End-point authentication criteria: All parties can be sure that the public
keys belong to the desired party, and a potential attacker cannot inject
their own public key to execute a man-in-the-middle attack.

Binary authenticity criteria: The parties can verify that they are running
backdoor-free software from a trusted vendor.

Tresorit defines end-to-end encryption as a method of secure communication that
ensures all encrypted information remains encrypted once it leaves the sender’s device
and remains encrypted until it reaches the recipient. This means that no third party has
any way of accessing the exchanged information.

While encryption and end-to-end encryption are now widely adopted, many solutions
provide only partial encryption, poor key management, or both. Such solutions may
allow service providers to access the data stored on their servers. In even worse cases,
nefarious third parties can exploit security flaws to gain access to confidential data.

To help users determine if a solution employs the highest standards of end-to-end
encryption, we have collected the key characteristics of an ideal end-to-end
encrypted solution:

1

2

3

4

5

6

7

Tresorit — Encryption Whitepaper 3

Meeting all the above criteria without getting in the way of day-to-day operations
is a daunting task in a business setting. The goal of this whitepaper is to o!er
a basic overview of how Tresorit works to ensure that we fulfill the criteria above
to the highest possible standards.

While our combination of end-to-end encryption and key management mechanisms is
enough to o!er an elevated level of security, we also employ additional industry-
standard protection measures such as:

Channel encryption: all communication between Tresorit’s clients and
servers is done on a TLS 1.2+ channel. This protects all communications
delivered via Tresorit against eavesdropping and data tampering.

Server-side authentication ensures that all clients are properly
authenticated and only permitted to access or modify information that
they are authorized to.

At-rest encryption means that data is encrypted and stored server-side
ensuring that the physical data and its corresponding encryption keys
are stored separately.

Tresorit — Encryption Whitepaper 4

4 https://napoleoncat.com/stats/facebook-users-in-germany/2020/01

5 https://napoleoncat.com/stats/facebook-users-in-germany/2021/01

6 https://napoleoncat.com/stats/facebook-users-in-united_states_of_america/2021/01

7 https://www.bundesbank.de/de/presse/pressenotizen/bargeld-bleibt-am-beliebtesten-kartenzahlungen-legen-zu-665622

8 https://www.statista.com/statistics/787626/average-amount-of-cash-in-wallet-euro-area/

Encryption on a tenant (or subscription) level: We provide business
administrators additional capabilities allowing them to access the content
of managed users, reset their passwords, control, and generate reports
on Tresorit usage at a company level.

Encryption concepts on an account level: During the registration process,
we ensure that the owner of the new account is identified by a verified email
address and generate keys corresponding to the new user on the device used
to register. These keys are the only ones that can be used to access the data.

Encryption concepts on a shared folder level: Our cryptographic mechanism
and additional controls make sure that only intended recipients can access
shared folders – i.e., those with whom the folders have been explicitly shared.

Encryption concepts on a file level: When uploading or accessing content,
all encryption and decryption operations are completed client-side. Thus,
the content of files never leaves an end-user’s device in unencrypted form.

1

2

3

4

This chapter will o"er an overview of the cryptographic aspects of Tresorit’s security.
To demonstrate the multilayered concept we apply to achieve strong encryption,
we will walk you through the main steps of the user journey and the encryption
techniques employed in each phase:

The following sub-chapters elaborate on what specific encryption methods and security
controls are used for the di"erent levels and how they work whenever operations are
carried out within Tresorit.Figure 1 – Tresorit's multi-level security practices ensure that the highest cryptographic

standards are applied on each level of user interactions.

Tresorit — Encryption Whitepaper 5

The client will connect to the server on a TLS 1.2+ channel (to protect non-end-to-end
encrypted information such as the email address). The client will send the encrypted
user profile, as well as the password validator, to the server. With our zero-knowledge
authentication protocol, the actual password is never sent to our servers. Thus,
there is no way for Tresorit to:

decrypt any information that was encrypted using the password of the user
(as the key derivation functions used are one-way operations)

restore the password of a user in case it was forgotten (see below for
more information)

An account belongs to an individual user (identified by their email address) in
a Tresorit tenant (or subscription).

During the registration of a new account, the user enters their email address and
password along with their first and last names. The client will automatically generate
a new, “empty” user profile locally. This user profile will serve as a container for future
encryption keys to access the content stored by the user.

Such encryption keys are generated through a cryptographic process. A random,
256-bit password salt is generated, which together with the password is the base for
deriving a 256-bit encryption key, known as the password key (derived using scrypt
as defined in RFC 7914, with N=32, r=8, and p=1 parameters and an HMAC step using
SHA-256). The password key is used to encrypt the user profile with AES-256-GCM
to also provide integrity protection.

At the same time, a password validator key is calculated from the output of the scrypt
algorithm with an HMAC step using SHA-256. The password validator is then sent to
the server and used to authenticate the user whenever they log in from a new device.

Registration

After the registration process, additional security features can be enabled, such as
multi-factor authentication. At least two of the following methods must be turned
on to ensure secure access to the account in question: email, text, voice, TOTP.

As previously mentioned, the user profile contains all encryption keys needed to access
the content of the user (folders, files, shared links, file requests, etc.). This encrypted
container is constructed in a way that allows multiple, independent decryption keys
to access its contents. The solution is enabled by a combination of AES-256 GCM in
an AEAD scheme with RSA-2048 and OAEP padding.

Figure 2 – Tresorit's registration process.

Tresorit — Encryption Whitepaper 6

https://datatracker.ietf.org/doc/html/rfc7914
https://datatracker.ietf.org/doc/html/rfc5246/

Figure 3 – Flowchart of the password authentication process.

The figure below illustrates the process in the case of a password. A password key is
derived using the above-mentioned scrypt algorithm. The password key is then used
to decrypt an RSA private key that serves to decrypt the profile key encryption key,
which can be used to access the contents of the profile itself.

When logging in from a new device for the first time, a user must enter their email
address and password (and additionally complete multi-factor authentication if
enabled). A proprietary challenge-response protocol is used for authentication based
on the salt and password validator established during the signup process. Tresorit uses
a PBKDFv2 and HMAC based challenge-response protocol, like CRAM-MD5 (RFC 2195).
Password derivation is handled by SHA-1 and PBKDFv2 with HMAC with SHA-1,
as recommended in NIST 800-132.

During the process, the server generates a 160-bit random nonce and sends it
to the client with the salt as a challenge. The client then assembles the response
value, which contains the salt received from the server, and a newly generated
160-bit client-side temporary salt value. It then calculates the password validator
and derives the actual response using PBKDFv2 with SHA-1 and 1 iteration, which
it sends back to the server. The server can also calculate the proper response
(since it previously stored the password validator value), and the authentication
process is finished if the two values match.

All communication is performed over a TLS 1.2+ channel, and the password of the
user never leaves their device during the process.

After successful authentication, the encrypted profile is sent to the client.
The profile is decrypted locally using the password key calculated by the client
with the previously entered password.

Login

Figure 4 – Flowchart of user authentication between the Tresorit client and the server.
All communication between the client and the server is perfomed on a TLS 1.2+ channel

Tresorit — Encryption Whitepaper 7

https://datatracker.ietf.org/doc/html/rfc2195
https://csrc.nist.gov/publications/detail/sp/800-132/final

As the password key and the password validator (both irreversibly derived from
the actual password) are used both for encrypting the user profile and authenticating
to Tresorit’s servers, changing passwords requires a sophisticated process.

First, the client initiates the same challenge-response protocol as described in the
first-time login process using the old password. Then a new password salt and
authentication salt are generated, and the new password key and password validator
are calculated from the new password according to the process described above.
The user profile is re-encrypted locally using the new key, and the client sends the
newly encrypted profile and the new authentication salt and password validator
along with the response. This concludes the password change process.

Please note that both the old password and the Tresorit client application are
required for the password change process. In addition, Tresorit servers also require it
to prevent malevolent actors from changing a password in the unfortunate case when
a device is left unattended, unlocked, with access to the Tresorit client.

The fact that the password change process involves the complete re-encryption
of the user profile makes server-side password recovery theoretically impossible,
which is a noteworthy technical point.

If the user is already automatically signed in to the client application, a device-
specific private key is available without knowledge of the password. The profile
is directly decrypted with this locally stored private key during automatic sign-in.
The device-specific private key never leaves the device and is protected using
platform-specific security measures.

However, the user must still prove their identity to our servers. Because the
password is unknown during automatic sign-in, there is no way of calculating
the password validator that would be used by the challenge-response protocol
during authentication. To replace it, a randomly generated, one-time authentication
code is sent to the email address associated with the Tresorit account. Similarly to
multi-factor authentication, we assume that if the user can obtain the authentication
code, it proves that they are in control of the respective email account. Derivatively,
this means they can also be in control of the associated Tresorit account.

However, the above do not mean that a user loses access to their data in the
event of a forgotten password. Normally, both the password verifier and password
key are required to change a password. However, these are both derived from
the password itself.

Tresorit has no access to passwords as these never leave the user’s devices.
Therefore, the password reset feature does not recover the actual password but
helps in setting up a new password securely.

Password change

Password reset

Additional device-specific keys are generated after decryption of the profile. One
of these is used to encrypt the profile key encryption key and is then stored in the
platform-specific locally encrypted storage provided by the operating system. This
key will be used to decrypt the profile in the future if auto-login is enabled on the
corresponding device. The other key will be used for communication with the
server to sign all API requests.

If auto-login is not enabled on the device, but a successful login has previously
been completed using the same device, a local profile will be decrypted. A device-
specific local key is used in this method, calculated from the password using the
PBKDFv2 algorithm with SHA-256 (FIPS-180-4) with 100000 iterations. This key
is di#erent from the key used to encrypt the user’s encrypted profile.

Tresorit — Encryption Whitepaper 8

A shared folder (tresor) is a top-level folder that can contain several sub-folders and
files and can be shared with other Tresorit users to collaborate on the contents.

To be able to access (or create) shared folders, a user must have the tresor share key.
When creating a new shared folder, this public-private key pair is generated locally, and
the private key is stored in the user profile. The server then saves the locally updated
encrypted profile after it is uploaded by the device and associates the public tresor
share key with the user. All the private tresor share keys are stored in the encrypted
user profile, and their public counterparts are managed by the server. Key rotation for
these is done automatically by the user device within reasonable intervals, or when
a given cryptographic event (such as a device revocation) necessitates it.

When creating a shared folder, a new tresor key file is generated. This is a similar
construct to the encrypted user profile. This file is the container for all further
encryption keys associated with the files and subfolders and is a shareable structure.
The tresor key file is encrypted with a combination of AES-256-GCM in AEAD scheme
and RSA-4096 with OAEP padding. This encrypted tresor key file is uploaded to
the server during the folder creation process alongside some metadata that is
also stored on the servers.

Accounts can have di"erent access permissions within a shared folder:

Viewers have the lowest level of access; they can download, decrypt,
and view the contents of the folder.

Editors can upload, modify, and delete content.

Managers have the right to share the folder with additional users.

Owners own the data of the shared folder and can modify manager roles,
invite new managers, or even delete the whole folder.

During the sharing process, the user opens the tresor key file using their own tresor
share private key (stored in their user profile). The recipient’s tresor share public key
is also retrieved from the server-side by the user’s device. The tresor key file is then
updated locally, shared with the recipient, and uploaded to the server where it is
stored. Additional information required for bookkeeping the member list required
for ACL is stored alongside this data.

Whenever access to a shared folder is revoked, a similar process happens – the tresor
key file is re-encrypted so the a"ected user can no longer decrypt it.

1

2

3

4

This code will be used to initiate the password change, which takes place as
described above. A new pair of keys are derived from the newly entered password.
The profile is re-encrypted and then uploaded to the cloud. The process also
updates the password validator.

The user’s devices employ di"erent keys to access the encrypted profile. These
are not changed during a password change, and their cryptographic access and
active sessions will not be revoked. This can be done separately.

End-to-end encryption: only those who can open the tresor key file can read
any data that is stored inside a shared folder. The end-user has full control over
who can access their data.

Server-side ACL (Access Control List): additional permissions are handled via
classical server-side controlled permission levels.

Whenever a folder is shared, data is protected at two levels:

Tresorit — Encryption Whitepaper 9

Files are organized in an arbitrary structure of folders and subfolders within
a shared folder (tresor). These files can either be shared individually via links
or on a folder or shared folder level.

Tresorit uses a symmetric key encryption algorithm, more specifically AES-256, in
OpenPGP CFB mode described in RFC4880 to encrypt all uploaded files and folders.
Every file has a unique, independent, and freshly generated 256-bit encryption key.

Each version of a file has a random 128-bit IV. As a result, its encrypted form changes
completely, even if only one bit is changed in the file. In practice, this ensures
that neither Tresorit nor others have any information about the changes made.
Folders are encrypted the same way, and the integrity of all ciphertexts is
protected with HMAC-SHA-512.

The file structure created client-side is mirrored on the servers, meaning files
and folders are stored in the same hierarchy. The keys and metadata of each file
or folder are stored in an encrypted format in their parent folder. Each file or folder
has a randomly generated, unique, 32-byte file identifier on the server-side.

A fresh file encryption key is generated by the device for each new file, or when
shared folder membership has changed since the last time an existing file was
uploaded (lazy re-encryption).

Link-based sharing
Tresorit o"ers users the option to share files and folders with others who may not
have a Tresorit account or when there is a one-time file transfer that makes creating
and sharing a folder unnecessary. As a result, technical solutions must be put in place
to ensure data security when a user cannot be authenticated with their email address
and password-derivative authentication information, and it’s essential to ensure the
provider has no access to data. When files are shared with links, the sharing link itself
contains the data needed to access the information stored within.

When a user creates a link to a shared file or folder, the Tresorit client application
will generate a link in the following format:

https://web.tresorit.com/l/<pathId>#<clientSecret>

Both <pathId> and <clientSecret> are freshly formulated random identifiers:

<pathId> is a 5-character random identifier that serves only server-side
validation and load-balancing. It is not involved in the encryption of the content.

<clientSecret> is a 128-bit random sequence encoded as Base64 (RFC 4648)
that carries the access information for the shared content. The secret is
generated on the client-side and placed into the fragment part of the URL. It
is never transmitted to the Tresorit backend, neither by the client applications
nor by the browser used to open the shared link. Meaning Tresorit cannot
use it to access the shared data.

1

2

Whenever a membership change occurs in a shared folder, a brand-new key is
generated and is used to encrypt all future content. This ensures that no one who
previously had access to the shared folder can access any newly created content
(a method called lazy re-encryption). While the ACL will limit access to old data
immediately when rights are revoked, this method does not require the data in
the shared folder to be re-encrypted immediately.

The parent folder is accessed (decrypted via the user profile and then the tresor key file
to access the root folder). The file name, modification date, file identifier, and the file
encryption key are stored inside, and the folder is re-encrypted. The server stores the
new encrypted parent folder and the encrypted files as well. Some metadata is stored
with the file, including the date of upload and the uploader’s email address.

Tresorit — Encryption Whitepaper 10

https://datatracker.ietf.org/doc/html/rfc4880
https://datatracker.ietf.org/doc/html/rfc4648

When a shared link is opened, the client-side application running in the browser
will extract <clientSecret> from the URL and uses the key derivation function PBKDFv2
to calculate two 256-bit derivative values: <linkId> and <encKey>. Note that PBKDFv2
is a one-way function so it is impossible to recreate <clientSecret>, or <encKey>
from only the <linkId>.

These values are used as follows:

Using <linkId> as an identifier, the application obtains an encrypted
metadata package from the Tresorit backend, which was stored there
when the link was created.

This package is then decrypted using <encKey> or, in the case of password-
protected links, the combination of <encKey> and the link password. In practice,
there are additional cryptographic steps involved here to enable additional
security measures like the option to show the name of the shared file before
asking for the password and to prevent brute-force attacks on the password.

The decrypted package contains all information needed to access the actual shared
content, including:

the name of the shared file

the server-side identifier of the encrypted file

the 256-bit file decryption key

The client application then downloads the shared content, decrypts it locally,
and presents it to the user.

1

2

Figure 5 – Simplified flowchart showing the process of opening a file using a shared link

Tresorit — Encryption Whitepaper 11

Countless Tresorit users are employees of organizations that have selected Tresorit
as their secure cloud storage and file-sharing provider. However, as all information
is end-to-end encrypted based on user identifiers, admins could run the risk of losing
control over company files and access to those stored by their employees, should
a user leave the tenant organization for whatever reason, from maternity leave,
resignation, or even a sudden tragedy. In other cases, an organization can even
be legally required to share files stored by their employees with the authorities or
oversight bodies. This is in the hands of your organization and user administrator –
Tresorit cannot access and hand over any customer data to regulatory bodies.

To avoid these risks and aid compliance, Tresorit has set up robust controls to
ensure admins never lose sight of and always have access to data stored within their
tenant organization. These systems allow Tresorit to o"er the highest standards of
security while managing all the risks connected to end-to-end encryption.

Advanced control gives tenant administrators – and only them – the ability to reset
user passwords or completely take over user accounts within the tenant. It relies on
the flexibility of user profiles, enabled by setting up the tenant-wide administrative
recovery key as an additional decryption method.

When a new user is registered to Tresorit, they accept their tenant administrator and
automatically encrypt their profile with the public key associated with the tenant.
This later enables the subscription owner to reset their password when needed.

The tenant administrator can initiate the password reset when their administrative
recovery private key is accessed from a secret kept in their user profile. The
administrative recovery private key will be stored in local memory during the entire
process. The encrypted user profile of the target user is retrieved from the server
and is decrypted locally with the administrative recovery private key.

Advanced control

Tresorit — Encryption Whitepaper 12

managing link security with passwords, expiration date and open limits

allowed viewers: allowing access to shared content for specific email
addresses or domains

enabling access logs to track shared files and see the email address, open
date, IP address and platform used to open the shared links

advanced link tracking to keep an eye on the number of times a file was
viewed, downloaded or saved to a Tresorit account

document analytics to get insight how recipients are engaging with the
shared document, down to the page level

avoiding unauthorized re-sharing of documents with dynamic watermarks

disabling download/print

Tresorit provides users a way to share files securely inside and outside their
organization via end-to-end-encrypted links. Thanks to the wide range of security
settings that can be customized based on the recipients’ profile and share intent,
users can keep full control over the content they’ve shared:

Advanced security controls for shared links

Single sign-on (SSO) integration allows selected users of the tenant to use their company-
wide Azure AD (Active Directory) or Okta credentials to sign in to their Tresorit account
instead of a dedicated password. When using SSO authentication, the end-user does not
have a Tresorit password. Both the server-side authentication and client-side decryption
must be based on other components.

When signing in to Tresorit via SSO, users enter their (company account) password on
the SSO provider’s own login screen to which the Tresorit application does not have
access. The SSO provider will return a claim to the client application that proves that
the user has successfully authenticated themselves.

Based on the trust relationship set up when admins configure SSO for Tresorit
subscription, Tresorit’s backend will be able to verify the origin of the claim and
provide access to the encrypted user profile. The Tresorit client application can
use the claim to obtain a second secret from the SSO provider to decrypt the
contents on the client-side.

Tresorit relies on the SSO provider’s claim to decide whether to allow access
to the encrypted data. The user profile is eventually decrypted with a key
stored at the SSO provider.

Single Sign-On

Administrative actions requiring Advanced Control (for example,
resetting subscription members’ passwords) will still require the
subscription administrator’s Tresorit password, even if SSO is enabled
for the administrator.

By using separate policy templates, admins will have detailed control over
who should use SSO and who remains on password-based authentication.
Thus, admins can create a circle of employees who manage data of the
highest sensitivity with the highest security Tresorit has to o"er while
allowing others the convenience of SSO.

However, Tresorit applies additional security measures to ensure SSO is used
in a secure and flexible way while satisfying companies’ specific needs:

An encryption key is then derived from a newly generated password and used to re-
encrypt the target user profile. The encrypted user profile of the target user is uploaded
to the server along with the password validator that corresponds to the newly generated
password. The target user can use the newly generated password to log in to their
account and change their password.

Whether login happens using standard password-based authentication or SSO,
Tresorit, as a service provider, never receives your password or gets access to any
of your encrypted content in any intelligible, un-encrypted, or decrypted form.
All cryptographic operations are done on the client-side to maintain end-to-end
encryption and zero-knowledge.

When admins set up SSO for a Tresorit subscription, they are trusting the SSO
provider to access and store Tresorit’s user profile encryption data that previously
existed only in the memory of their workforce. This information is shared with the SSO
provider in addition to the information for verifying passwords that the SSO provider
already has. In most cases, this is not a new or critical concern, as all other company
systems that process sensitive information (email, device access, additional cloud
storage, payroll CRM, etc.) already have SSO configured. Should such a setup exist,
this risk has already been assessed and accepted.

Tresorit — Encryption Whitepaper 13

Figure 6 – When SSO is used, the identity provider sends the Tresorit client a claim that the user has
authenticated themselves successfully. This is used to obtain a second secret to decrypt the user profile.

Tresorit — Encryption Whitepaper 14

Additional tenant level controls
Beyond cryptographic access, administrators (and co-administrators) have several
controls that can be enforced on the server-level to further enhance the security level
of an organization and aid them in staying in control of their data. By setting up
custom policies, they have the capability to restrict how users can use the application
and di!erent functions, such as:

enforcing 2-step verification,

defining allowed devices and platforms to limit the operating systems
and mobile platforms certain user groups can use to access Tresorit,

setting IP filtering and session control to control the IP addresses from
which selected user groups can log in to Tresorit,

disabling remember-me,

disabling permanent deletion,

data residency options that allow admins to specify the location of data centers
to satisfy company policy or industry and jurisdiction-specific regulations,

disabling tresor creation, sharing and synchronization to support the
creation of group policies that prohibit or limit sharing rights.

Tresorit — Encryption Whitepaper 15

Users can access the Tresorit service with a client application installed on the user’s
device, or alternatively, the web-based client. The client application handles all
encryption, decryption, key management, and sharing, file synchronizing logic on
the client-side. To ensure binary authenticity, client applications are signed by Tresorit.
This signature is checked automatically before any update happens. The application
is available for all major desktop and mobile platforms:

Windows (7, 8, 8.1, 10)

Mac (OSX 10.9 or later)

Linux (Ubuntu 16.04+, and all Linux distributions with a window
manager from the last 4 years)

Android (5 or later)

iOS (11 or later)

The web-based Tresorit client requires JavaScript, and can be accessed from
the following browsers:

JavaScript is needed because the application runs inside of the browser and completes
all encryption and decryption operations locally. The same principles apply as with
all Tresorit instances:

Chrome 60 or later,

Firefox 60 (ESR) or later,

Safari 11 or later,

Edge 77 or later

Brave

All files, folders, profiles, etc., are encrypted within the browser’s memory
before they are uploaded.

All files, folders, profiles, etc., are downloaded in encrypted form and
decrypted within the browser’s memory before being displayed to the end-user.

Tresorit — Encryption Whitepaper 16

We at Tresorit believe that to ensure data security against the threats of the digital
world, solutions must not only o!er protection but also be easy to use. If users
circumvent secure solutions because they are di"icult to set up, deploy, or get in
the way of everyday tasks, they remain unprotected.

That is why the multi-level encryption technologies detailed above are constantly
at work in the background to ensure data remains secure while providing an outstanding
user experience. Despite our technology being centered around our zero-knowledge end-
to-end encryption methodology, several other security features ensure the confidentiality
and safety of user communication inside and outside of user organizations.

These security features have been designed to satisfy the strictest data protection
and compliance requirements of highly regulated industries such as financial services,
healthcare, legal, manufacturing and even defense contractors. This unique combination
of security features coupled with our data residency options support organizations
in staying compliant with local and industry-specific legislations, such the GDPR,
FINRA, HIPAA, TISAX, and CCPA.

Today, organizations are faced with complex challenges when it comes to digital
security and compliance. That’s why Tresorit is committed to understanding their
needs and creating a cloud productivity solution to protect sensitive data and support
collaboration in o"ices, fully remote workforces, and across borders.

Learn more about our various encryption technologies, security, and compliance
features at tresorit.com, and make sure to follow us on LinkedIn and Twitter to stay
up to date with the latest news about our solutions.

Tresorit — Encryption Whitepaper 17

https://tresorit.com/
https://hu.linkedin.com/company/tresorit
https://twitter.com/Tresorit

